ACTN3 R577X Genotypes Associate with Class II and Deep Bite Malocclusions

Kornberg School of Dentistry
TEMPLE UNIVERSITY
Brian M. Zebrick, DDS
Temple University Kornberg School of Dentistry
Department of Orthodontics
May 16, 2015

Genotyping & Masseter Gene expression using GWAS candidate genes
So far we have identified 28 significant genetic associations for malocclusion, including: HDAC4, KAT6B, MYO1H, MYO1C, ACTN2, ACTN3, ENPP1, ATP2A2, NLRK1, PPPTCC, RUNX2, GABRA6, CACN2A2D1, IL1B, IL1R2, ILE, IL8, CCL2, CCL4, CCL26, CCL4, CXCL12, and Nodal Pathway genes Nodal, Lfetf, Nodal-modulators Nomo-1, 2, 3, MiR15B/16, and Pitx2.

1. IGF1 Growth pathway

2. Nodal Pathway development of skeletal & muscular structures of 1st Brachial Arch

Asymmetric Nodal expression in the node, and signaling in the left Lateral Plate Mesoderm.

ACTN3 Associates with Athleticism and Muscle Size

577RR, 577RX= (+) α-actinin-3
577XX= (-) α-actinin-3

Athleticism by R577X Genotype

Lateral Cephalograms

What is the association of ACTN2 and ACTN3 expression and musculoskeletal malocclusion phenotypes in masseter muscle of orthognathic surgery patients?

>340 orthognathic surgeries/year
• Including mandibular bilateral split ramus osteotomy

"High Throughput" clinic for collection of clinical & biological samples
Materials and Methods

- Genotyping
 - 2 SNPs
 - rs1815739 (the 577X SNP)
 - rs678397 (no known functional consequences)
- Fiber type and RT-PCR analysis of muscle
- Immunostaining with antibodies specific for myosin heavy chain (MyHC) isoforms
 - Type I, type hybrid, type IIA and/or IIX, neonatal, and atrial
- Quantification of Actinin mRNA
 - ACTN2 and ACTN3 were quantified by TaqMan® quantitative real time PCR (qRT-PCR)

Masseter Muscle Fiber Types Change with ACTN3 Genotypes

<table>
<thead>
<tr>
<th>Fiber Type</th>
<th>Area %</th>
<th>Occupancy %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>35</td>
<td>13</td>
</tr>
<tr>
<td>Type II</td>
<td>25</td>
<td>8</td>
</tr>
<tr>
<td>Type IIA</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Type IIX</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Type II hybrid</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>Type I hybrid</td>
<td>10</td>
<td>3</td>
</tr>
</tbody>
</table>

TaqMan RT-PCR Quantification

- Actinin Expression in Masseter Muscle of Orthognathic Surgery Subjects

<table>
<thead>
<tr>
<th>ACTN2</th>
<th>ACTN3</th>
</tr>
</thead>
<tbody>
<tr>
<td>P = 0.780</td>
<td>* P = 0.001</td>
</tr>
</tbody>
</table>

Conclusions

1. ACTN3 expression varied more than ACTN2, with relative amounts of α-actinin-3 decreased in open bite and skeletal Class II.
2. Decreased α-actinin-3 associated with smaller type II fiber diameter.
3. ACTN3 mRNA expression decreased to almost undetectable with 577XX genotype, while ACTN2 expression levels remained unchanged, suggesting α-actinin-2 may not compensate for loss of α-actinin-3.
4. Actn3 knockout mice have significant decreases in bone mineral density. Further absence of α-actinin-3 in bone resulted in increased expression of Enpp1, a negative regulator of mineralization. These relationships may be important to the development of Class II malocclusions in humans and merit further investigation.
Future Directions

Actn3 KO Reductions in Mandibular Length

<table>
<thead>
<tr>
<th>KO</th>
<th>YIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=4</td>
<td>n=4</td>
</tr>
<tr>
<td>Length</td>
<td>Width</td>
</tr>
<tr>
<td>25.60</td>
<td>11.85</td>
</tr>
<tr>
<td>25.60</td>
<td>11.85</td>
</tr>
</tbody>
</table>

Future Directions: Gene microarray comparing mandibular gene expression in Actn3 KO, The GIAN Consortium GWAS as a priori genes of interest

References

Acknowledgements

James Strole
Michael Horton
Teas Taramongkul
James Cavallano
Jeffrey Godil

Ph. Joel Ferri
Ph. Gwenaal Ranul
Resident:
Romain Noit

University of Pittsburgh

THANK YOU!

3/31/2015